
So�ware Development (cs2500)

Lecture 38: Inner Classes

M.R.C. van Dongen

January 26, 2010

Contents
1 Outline 1

2 �e Graphics2DClass 1

3 Drawing on Demand 3
3.1 Drawing Two Widgets . 3

3.2 Finishing the Application . 4

4 Inner Classes 5
4.1 One Event Listener Class . 6

4.2 Two External Listener Classes . 6

4.3 Two Inner Listener Classes . 8

5 For Friday 10

1 Outline
�is lecture continues our study of event handlers and guis. We start with an application that has several

widgets in a JFrame. We implement the application by introducing inner classes

2 �e Graphics2DClass
Before we start with our multi-widget application, let’s have a look at some graphics widgets.

Creating a drawing widget is easy: you extend JPanel and override paintComponent(). �e method

paintComponent() is called when the JPanel is redrawn. Don’t call it yourself: it’s called automatically.

�e following is an example.

1

import java.awt.*;
import java.swing.*;

public class MyDrawPanel extends JPanel {
@Override
public void paintComponent(Graphics g) {

g.setColor(Color.green);
g.fillRect(20, 50, 100, 100);

}
}

Java

�e following shows a class that draws a circle with a random colour. You’re invited to look up the

methods fillRect, fillOval, and the Color constructor in the online Java api documentation.

import java.awt.*;
import javax.swing.*;
import java.util.Random;

public class MyRandomPanel extends JPanel {
private static final Random rand = new Random();

@Override
public void paintComponent(Graphics g) {

g.fillRect(0, 0, this.getWidth(), this.getHeight());
int redPart = rand.nextInt(255);
int greenPart = rand.nextInt(255);
int bluePart = rand.nextInt(255);
g.setColor(new Color(redPart, greenPart, bluePart));
g.fillOval(70, 70, 100, 100);

}
}

Java

�e following is a concrete class that draws randomly coloured circle.

2

import javax.swing.*;

public class RandomCircle {
public static void main(String[] args) {

JFrame frame = new JFrame("A Randomly Coloured Circle");
JPanel panel = new MyRandomPanel();
frame.getContentPane().add(panel);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(300, 300);
frame.setVisible(true);

}
}

Java

�e type of the argument of paintComponent() is Graphics. �e type of the object referenced by

the argument is actually Graphics2D. �is should tell you that Graphics2D extends Graphics.

�e class Graphics2E can do more than the class Graphics. For example, it lets you �ll a shape with a

gradient blend. Inside the paintComponent() you use casting to create a Graphics2E reference from a

Graphics reference. �e following reminds you how this works.

public void paintComponent(Graphics g) {
Graphics2E g2e = (Graphics2E)g;
GradientPaint grad = new GradientPaint(70, 70, Color.blue,

150, 150, Color.red);
g2e.setPaint(grad);
g2e.fillOval(70, 70, 100, 100);

}

Java

You’re invited to look up the GradientPaint constructor and the method setPaint(). �ese

methods are not examinable.

3 Drawing on Demand
�is section demonstrates how to draw graphics on demand. We create a frame with two widgets: a

drawing panel that draws randomly coloured circles, and a button. We create a listener that registers

with the button. �e listener waits until the user clicks the button. When the user clicks the button, this

creates an action event. �is triggers the listener’s action even handler, actionPerformed(). �e action

event handler simply repaints the frame. Repainting the frame repaints each of its widgets. As a result

we get a new random colour for the circle.

3.1 Drawing TwoWidgets
For our application we need to draw two widgets. We know how to draw one:

frame.getContentPane().add(button); Java

3

north

center

south

west east

Figure 1: �e �ve di�erent regions of JFrame’s content pane.

But how do we draw two? Figure 1 shows a key to solving the problem. As you can see, the frame’s

content pane has several regions.

When adding a widget to the frame’s content pane you can use an overloaded version of the add(
) method. �is version takes an additional parameter which determines the region for the widget’s

position. �e following shows how it works. (�e additional regions work similarly.)

frame.getContentPane().add(BorderLayout.CENTER, button); Java

3.2 Finishing the Application
�e following shows how to �nish our application. For simplicity the import statements have been

omitted.

public class RandomColours implements ActionListener {
JFrame frame;

public static void main(String[] args) {
RandomColours rc = new RandomColours();

}

@Override
public void actionPerformed(ActionEvent event) {

frame.repaint();
}

// Constructor in next listing
}

Java

�e actionPerformed() method calls frame.repaint(). �is calls paintComponent() on every

widget in the frame. �e paintComponent() of the panel draw a circle with a random colour, so this

4

gives us (more than likely) a di�erent colour each time the user clicks the button.

�e following is the constructor.

private RandomColours() {
frame = new JFrame("Random Colours");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JButton button = new JButton("Change Colour");
button.addActionListener(this);

// The class MyRandomPanel is listed on Page 2.
MyRandomPanel panel = new MyRandomPanel();
Container contentPane = frame.getContentPane();

contentPane.add(BorderLayout.SOUTH, button);
contentPane.add(BorderLayout.CENTER, panel);

frame.setSize(300, 300);
frame.setVisible(true);

}

Java

4 Inner Classes
In this section we shall study three techniques which may be used to implement several event listeners.

For the purpose of this section we shall only consider two even listeners.

Let’s change our last application. We keep the button and the panel. However, we add one more

button and a JLabel. �e �rst time the user clicks the new button the JLabel’s text will change.

So, how do we do that? �ere are three possible techniques:

• One event listener which is registered with both buttons. Since there’s only one listener, it has

to handle two kinds of event. �e listener determines the event source: Button 1 or 2? And then

handles it.

• We have two separate external event listener classes. Each class has its own listener. Since each class

has its own listener, there’s no need to determine the source of events. Since the classes are external,

they don’t have access to the frame and widget attributes of the main class. �erefore, they have to

encapsulate their own widget.

• Two inner event listener classes. �e inner classes are part of the main class. �ey have access

to frame and widget attributes. �erefore, the inner classes don’t have to encapsulate their own

widgets. As with the second option, there’s no need to determine the source of events.

�e remainder of this section demonstrates each of these three techniques.

5

4.1 One Event Listener Class
�e following is the core code which is needed to implement the �rst technique. �e main application

has four attributes. �e JFrame is needed to call repaint() in the event handler actionPerformed().

Likewise, the JLabel is needed for changing the text. Finally, the JButtons are needed to determine the

event source in the event handler.

public class OptionOne implements ActionListener {
// Instance attributes needed.
private final JFrame frame;
private final JLabel label;
private final JButton colourButton;
private final JButton labelButton;

public static void main(String[] args) {
new OptionOne(); // No assignment needed.

}

@Override
public void actionPerformed(ActionEvent event) {

if (event.getSource() == colourButton) {
frame.repaint();

} else if (event.getSource() == labelButton) {
label.setText("New Text");

}
}

// Constructor omitted.
}

Java

�is option is not very clean because we may have to change the implementation of the event handler

if we change the implementation of the class. For example, if we decide to put the JButtons in an array

then we have to change the event handler.

4.2 Two External Event Listener Classes
�e second option is cleaner. Here we have two event listener classes, each of which is implemented in its

own �le. �ere is one class listening to the colour button event and one listening to the label button event.

�e �rst class encapsulates the JFrame and the second class encapsulates the JLabel.notesfootnoteBefore

you continue, see if you understand why this is needed. What can the class “see?” Each class may

encapsulate its own button, but is not required.

�e following shows a possible implementation for the �rst outer class. �e class is only meant to

serve as an example, which should explain why name of the class is not very imaginative. �e second

class may be implemented in a similar way.

6

import javax.swing.*;
import java.awt.event.*;

public class Outer1 implements ActionListener {
private final JFrame frame;

public Outer1(JFrame frame) {
this.frame = frame;

}

@Override
public void actionPerformed(ActionEvent event) {

frame.repaint();
}

}

Java

�e details for the main class are in the listing on the next page. Note that there is no need for this

class to implement the ActionListener interface; listening is taken care of by the two external classes.

Also note that this class no longer needs instance attributes: the main() sets everything up. �e import
statements have been omitted.

7

public class OptionTwo {
// No instance attributes needed.
public static void main(String[] args) {

JFrame frame = new JFrame("OptionTwo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JLabel label = new JLabel("Initial Text");

JButton colourButton = new JButton("Change Colour");
JButton labelButton = new JButton("Change Label");
colourButton.addActionListener(new Outer1(frame));
labelButton.addActionListener(new Outer2(label));

MyRandomPanel panel = new MyRandomPanel();
Container contentPane = frame.getContentPane();

contentPane.add(BorderLayout.SOUTH, colourButton);
contentPane.add(BorderLayout.CENTER, panel);
contentPane.add(BorderLayout.WEST, label);
contentPane.add(BorderLayout.EAST, labelButton);

frame.setSize(500, 300);
frame.setVisible(true);

}
}

Java

�is option is cleaner than the �rst option but we have to implement two separate external classes

which have attributes which are also known outside the class. As a consequence we have to write special

constructors for the classes, which, as we shall see in a few moments, can be avoided.

4.3 Two Inner Event Listener Classes
�e third and last option is the cleaner option. We simply create the event listener classes inside the

main class. Java allows this and the resulting classes are called inner classes. Inner classes are almost as

�exible as normal classes and you can encapsulate them inside another class.

Since they are inside their “parent” class they can see all any attribute which is owned by the parent

class. �e following shows the main details of a possible implementation. �e import statements have

been omitted. Notice that this time instance attributes are needed because they are needed by the inner

classes. Carefully compare this to the implementation of OptionTwo.

8

public class OptionThree {
// Instance attributes needed.
private final JFrame frame;
private final JLabel label;

public static void main(String[] args) {
new OptionThree();

}

private OptionThree() {
frame = new JFrame("OptionThree");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

label = new JLabel("Initial Text");

JButton colourButton = new JButton("Change Colour");
JButton labelButton = new JButton("Change Label");
colourButton.addActionListener(new Inner1());
labelButton.addActionListener(new Inner2());

MyRandomPanel panel = new MyRandomPanel();
Container contentPane = frame.getContentPane();

contentPane.add(BorderLayout.SOUTH, colourButton);
contentPane.add(BorderLayout.CENTER, panel);
contentPane.add(BorderLayout.WEST, label);
contentPane.add(BorderLayout.EAST, labelButton);

frame.setSize(500, 300);
frame.setVisible(true);

}

// Inner classes in next listing
}

Java

�e following are the inner classes. Notice how simple they are. Arguably this is the better of the

three options.

9

public class OptionThree {
private final JFrame frame;
private final JLabel label;

// Constructor and main omitted.

private class Inner1 implements ActionListener {
@Override
public void actionPerformed(ActionEvent event) {

frame.repaint();
}

}
private class Inner2 implements ActionListener {

@Override
public void actionPerformed(ActionEvent event) {

label.setText("Text Changed");
}

}
}

Java

5 For Friday
Study the lecture notes, carefully study the di�erences between the three di�erent options in Section 4,

and study Chapter 11 (up to Page 381).

10

	Outline
	The Graphics2D Class
	Drawing on Demand
	Drawing Two Widgets
	Finishing the Application

	Inner Classes
	One Event Listener Class
	Two External Listener Classes
	Two Inner Listener Classes

	For Friday

